MAYO CLINIC

Cardiovascular Effects of Anesthesia for Cesarean Delivery in the Cardiac Patient

Katherine W. Arendt, M.D. Associate Professor of Anesthesiology Mayo Clinic, Rochester, Minnesota

Cardiac Problems in Pregnancy Saturday, February 24, 2018, 11:40-11:55

MAYO CLINIC

Indications for General Anesthetic

- Anticoagulation
- Inability to lie flat
- Severe illness with need for:
 - Mechanical Ventilation
 - Heart failure
 - Pulmonary vasodilation
 - Pulmonary HTN
 - Risk of hemodynamic disaster
 - Dissecting aorta

Basics of General Anesthesia Induction for CS in Cardiac Disease

GOALS: Avoid hypotension

- 1. Moderate dose opioid
 - Fentanyl 1-2mcg/kg
 - Remifentanil 1-2mcg/kg
- 2. Lidocaine 50-100mg
- 3. Short-acting hypnotic, carefully titrated
 - Ketamine: †BP, †HR, † SV, †CO, †SVR
 - Propofol: ↓ SV, ↑HR , ↓SVR, ↓BP
 - Etomidate: ↑BP, ↑HR if no premed
- 4. Rapid-onset muscle relaxant
 - Succinylcholine
 - Rocuronium

- Blunt tachycardia to laryngoscopy, intubation & incision
- Typically avoided in CS because of neonatal depression

© 2005 Pearson Prentice Hall, Inc.

MAYO CLINIC

ŢŢ

Hypotension from Neuraxial Anesthesia

Box 1. Techniques to decrease hypotension with neuraxial anesthesia for cesarean delivery.

- Leg wrapping [134]
- Prehydration or co-load with intravenous colloid solution [57]
- Co-load with crystalloid intravenous solution [57]
- Lower dose intrathecal local anesthesia supplemented with opioid [86]
- Maternal left uterine displacement positioning [128]
- Consider epidural instead of spinal anesthesia [95]
- Phenylephrine infusion with rapid crystalloid co-load [160]
- Phenylephrine infusion with low-dose intrathecal bupivacaine [63]
- Phenylephrine infusion or boluses titrated to maintain a consistent heart rate [41,63]

Four Major Cardiovascular Events of Regional Anesthesia for Cesarean Delivery

- 1. Pre-hydration/co-hydration
- 2. Block onset
- 3. Delivery

4. Oxytocin administration

Pre-hydration/ Co-hydration

GOAL: Improve uteroplacental perfusion & prevent hypotension

Pre-hydration

- Hydration prior to placement of block
- <u>></u> 1L crystalloid
 - Increases CO ~11-20%
- <u>></u>1L colloid
 - Increases CO ~45%

Co-hydration

- Rapid hydration initiated at time of block placement
- Found to be equally ineffective at preventing hypotension

Co-hydration in cardiac patients

Typical elective CS: 1-2 L crystalloid over < 1 hr

Discussions with anesthesia should include fluid management in patients vulnerable to failure

Minimizing fluids in elective CS:

- 1 vasopressor (phenylephrine)
- Likely ↓ uteroplacental perfusion
- Likely safe for mom & baby in most circumstances

Block Onset

Spinal block onset: time of greatest hemodynamic change Fetus comes off monitor as abdomen prepped

Drop in Preload & SVR:

Spinal > CSE > Epidural

Ease, reliability, safety & intraoperative pain relief: Spinal > CSE > Epidural

Arendt KW, et al. Expert Rev. Obstet. Gynecol 2012. 7: 59-75.

Table 2. Cardiac output measurements during epidural anesthesia for elective cesarean delivery.							
Study (year)	Measurement technique	Confounding factors	Epidural drug	CO after prehyd (l/min)	CO after block (l/ min)	CO after placental delivery (l/min)	CO 1 h after birth (l/min)
Ueland et al. (1972)	Dye dilution	Prehyd: NA Level: T2–T10 Position: supine LUD performed if significant drop in BP occurred	2% mepivacaine (13.5–17.5 ml)	5.88 ± 1.31	5.52 ± 1.77 ↓6%†	7.34 ± 1.84 ↑25%† ↑33%‡	6.71 ± 1.95 †14%† †22%‡ ↓9%§
Maruta (1982)	Echo	Prehyd: <1 I Level: NA Position: NA	es in Ca	5.95 ± 1.49	5.05 ± 1.59 Output Al	6.08 ± 1.31	5.41 ± 0.91 % [†] % [‡] 1% [§]
James et al. (1989)	Suprasternal Doppler (aortic orifice measured by cross-section)	Prehyd: 5 ml/kg Level: T4-T8 Position: LUD • Patient'	s requiring	ephedri	ine were ex	cluded.	1 ± 1.7 %† 0% [‡] 1% [§]
Milsom <i>et al.</i> (1985)	Impedance cardiography	Co-load: 1.5–2.0 • Epidura Level: NA Position: LUD Atropine 0.5 mg Subjects requiring ephedrine excluded	ils are not a erative pain	is reliab	le to block	Ln	Å
Robson et al. (1992)	Suprasternal Doppler (aortic orifice measured by cross-section)	Prehyd: 1 crystalloid 1.2 ± 0.2 total fluids Ephedrine administered 60 mg/l in lv. fluids after prehyd Level: T2–T6 Position: LUD	0.5% bup + 1:200,000 epi (18–30 ml)	7.83	10 min after 8.20 †5% 30 min after 7.96 †2%	NA	NA
Robson et al. (1989)	Suprasternal Doppler (aortic orifice measured with cross-sectional echo)	Prehyd: 500 ml crystalloid Level: >T5 Position: LUD Subjects requiring ephedrine excluded	0.5% bup (21 ± 3 ml)	7.14	7.08 ↓<1%⁺	7.69 18%† 19%‡	6.65 ↓7% ⁺ ↓6% [±] ↓14% [§]
Robson et al. (1989)	Suprasternal Doppler (aortic orifice measured with cross-sectional echo)	Prehyd: 0.8 l mean Level: T2–T6 Position: LUD Subjects requiring ephedrine excluded	0.5% bup (20 ± 5 ml)	7.82	10 min after 7.34 ↓6%† 30 min after 7.12 ↓9%†	NA	NA

Arendt KW, et al. Expert Rev. Obstet. Gynecol 2012. 7: 59-75.

Delivery

• Uterine evaculation \rightarrow

Aortocaval decompression & autotransfusion

†CO (Range 10% – 61%) †HR †SV ↓SVR ↔ MAP

Oxytocin Administration

MAYO CLINIC

Rosseland LA et al. Anesthesiology 2013.119:541-551

Optimization of CS hemodynamics

- Left uterine displacement
- Consider arterial line
- Epidural anesthetic:
 - 0.5% bup or 2% lido without epi
- Sequential CSE:
 - 5mg isobaric IT bup followed by 2% lido epidural titration
- Titrated to T4-6 level
- Careful minimal co-hydration with crystalloid
- Phenylephrine infusion initiated at time of block
- Minimize/titrate oxytocin on pump

Thank you!

Arendt.katherine@mayo.edu

©2015 MFMER | slide-18